RESEARCH ON POLYFUNCTIONAL OXIDES VIII.* PREPARATION, PMR SPECTRA, CONFIGURATIONS, AND CONFORMATIONS OF SOME 1,3-DIOXOLANES

L. P. Glushko, T. M. Malinovskaya, M. S. Malinovskii, M. M. Kremlev, N. I. Pokhodenko, T. A. Zyablikova, and N. A. Zhikhareva UDC 547.729.7:541.63:543.422.25

N, N-Diethylcarbamoyl-4, 5-epoxy-2-hexenoic acid reacts with ketones in the presence of anhydrous $FeCl_3$ to give 2,2,4-trialkyl-5-[2-N, N-diethylcarbamoyl(vinylene)]-1,3-dioxolane. 2,2,4-Trimethyl-5-(1-propenyl-3-hydroxy)-1,3-dioxolane is formed in the reduction of 2,2,4trimethyl-5-[2-carbethoxy(vinylene)]-1,3-dioxolane withlithium aluminum hydride.

Esters of 4,5-epoxy-2-hexenoic acid react with ketones in the presence of acid catalysts to give 2,2,4-trialkyl-5-[2-carbalkoxy(vinylene)]-1,3-dioxolanes [2]. In contrast to the esters, substituted amides of 4,5-epoxy-2-hexenoic acid react with ketones in the presence of a large excess of FeCl₃. We have carried out the reaction of N,N-diethylcarbamoyl-4,5-epoxy-2-hexenoic acid with acetone and methyl ethyl ketone:

 $CH_{3}-CH-CH-CH=CH-CON(C_{2}H_{5})_{2} + RCOCH_{3} \rightarrow CH_{3}-CH-CH-CH=CH-CON(C_{2}H_{5})_{2}$ I $CH_{3}-CH-CH-(CH_{2})_{2}-CON(C_{2}H_{5})_{2} = RCOH_{3}$ $R = CH_{3}$ $II = R = CH_{3}$ $II = R = CH_{3}$ $II = R = CH_{3}$

The IR spectra of II contain absorption bands at $1025-1055 \text{ cm}^{-1}$, which are due to vibrations of C-O-C bonds, but do not contain the absorption bands of the epoxide ring (840 cm⁻¹). Compounds II are readily hydrogenated by hydrogen in the presence of Raney Ni to 2,2,4-trialkyl-5-[2-N,N-diethylcarbamoyl-(ethyl)]-1,3-dioxolanes (III).

The reduction of 2,2,4-trimethyl-5-[2-carbethoxy(vinylene)]-1,3-dioxolane (IV) with lithium aluminum hydride gave 2,2,4-trimethyl-5-(1-propenyl-3-hydroxy)-1,3-dioxolane (V), which is hydrogenated by hydrogen over Raney Nickel to saturated alcohol VII, which is also obtained by alternative synthesis from ester VI.

*See [1] for communication VII.

Dnepropetrovsk State University. A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 593-596, May, 1974. Original article submitted April 2, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

				CH ₃	СН3											
F				δ, ppm				δ , p	bm					l, Hz		
-moD	ĸ	c∕ ^{CH} ₃	CH3CH	НA	н _в	H _C	ЧD	CH3	CH ₂	НО	CH ₃ H _A	H _A H _B	H _B H _C	H _C H _D	Н _в Н _D	CH ₃ CH ₂
IIa	$H_cC=CH_D-CON(C_2H_5)_2$	1,35 1,48	1,18	4,38	4,69	6,61	6.34	1,26	3,43		6,3	6,3	4,0	15,0	1,4	6,5
IIIa	CH ₂ cCH ₂ D—CON (C ₂ H ₅) ₂	1,25 1,34	1,15	4,25	3,96	1,71	2,39	1,20	3,35		6.6	6,0	4,0	W	W	6,6
>	CH _c =CH _p -CH ₂ OH	1,30 1,45	1,05	3,54	4,22	4,70	4,60	1	4,00	2,58	6,3	6,3	6,0	ж	W	ł
ΝI	CH2cCH2DCH2OH	1,30 1,41	1,05	4,12	3,96	1,50	1.50	1	3,54	3,15	6,5	6,5	W	W	W	1
			-	-			_	-	-	-	-	-	-		-	

The abbreviation "M" indicates a complex multiplet.

The PMR spectra (Table 1) confirm the assigned structure for all of the 1,3-dioxolanes obtained. The spectrum of IIa is presented in Fig. 1 as an example. The magnitude of the J_{CD} vicinal constant (15 Hz) in the spectrum of IIa indicates trans orientation of the coupling protons attached to the double bond. According to the Karplus-Conroy angular correlation [3], a J_{CB} constant of 4 Hz corresponds to the gauche conformation between the two coupling H_B and H_C protons.

The configuration of substituents relative to the 1,3-dioxolane ring is usually established from the coupling constants of the H_A and H_B vicinal protons. It is seen from Table 1 that these protons couple with a constant of 6.3 Hz. It is known [4] that the trans constant is lower than the cis constant for small rings, including five-membered rings. We therefore assume that the J_{AB} constant of 6.3 Hz indicates trans orientation of the substituents.

Let us consider the conformation of the diethylcarbamoyl group relative to the unsaturated bond. The H_C and H_D protons are nonequivalent ($\Delta \delta_{CD} = 0.27$ ppm), and the H_C proton (Fig. 1) is shifted to weak field as a consequence of the paramagnetic anisotropic effect of the carbonyl group; this is possible if it is not in conjugation with the double bond. A consequence of this is the s-cis conformation of the unsaturated fragment.

The structure of the saturated 1,3-dioxolanes (IIIa) was also established by means of the PMR spectra. It can be seen from Table 1 that the position of the substituents relative to the 1,3-dioxolane ring is retained during reduction, as indicated by the almost equal J_{AB} values, but the chemical shifts of the H_A and H_B protons are inverted because of removal of the paramagnetic effect of the double bond.

EXPERIMENTAL

The PMR spectra* of 1% solutions of the compounds in CCl_4 were recorded with a Varian HA-100D spectrometer at 100 MHz and with a Varian T-60 spectrometer at 60 MHz at room temperature. Stabilization of the resonance conditions was accomplished from the line of tetramethylsilane. The IR spectra of solutions of the compound in CCl_4 were recorded with a UR-10 spectrometer. Gas-liquid-chromatographic analysis was performed with an LKhM-7a chromatograph with a 1-m long

TABLE 1. PMR Spectra of 1,3-Dioxolanes $c_{H_3-c_{H_{s-1}}}$

^{*} The authors thank Professor Yu. Yu. Samitov for his assistance in this research.

column filled with Chromosorb W, 18% Apiezon L, and 5% polyethylene glycol distearate; the column temperature was $120-140^{\circ}$, and the carrier gas was N_2 .

N,N-Diethylcarbamoyl-4, 5-epoxy-2-hexenoic acid (I) and 2,2,4-trimethyl-5-[2-carbethoxy(vinylene)]-1,3-dioxolanes (IV) were obtained by the method in [2, 5].

2.4-Dimethyl-2-ethyl-5-[2-N,N-diethylcarbamoyl (vinylene)]-1,3-dioxolane (II). This compound was obtained from 23.6 g (0.032 mole) of methyl ethyl ketone and 4 g (0.021 mole) of N,N-diethylcarbamoyl-4,5-epoxy-2-hexenoic acid in the presence of 3.85 g (0.023 mole) of anhydrous ferric chloride by heating to 45-50° for 12 h. The mixture was treated with potassium carbonate and worked up to give 1.72 g (31%) of the dioxolane with bp 147-150° (2 mm) and n_D^{20} 1.4857. Found %: C 64.1; H 9.8; N 5.5. $C_{14}H_{25}NO_3$. Calculated %: C 63.9; H 9.5; N 5.2.

2,4-Dimethyl-2-ethyl-5-[2-N,N-diethylcarbamoyl (ethyl)]-1,3-dioxolane (III). This compound was obtained by reduction of 1 g (0.030 mole) of II with hydrogen over Raney nickel under standard conditions. The yield of product with bp 118-120° (2 mm) and n_D^{20} 1.4511 was 0.6 g (61%). Found %: C 67.1; H 11.3; N 5.2. $C_{14}H_{27}NO_3$. Calculated %: C 66.4; H 9.0; N 5.4.

2,2,4-Trimethyl-5-[2-N,N-diethylcarbamoyl(vinylene)]-1,3-dioxolanes (IIa and IIIa). These compounds were obtained by the method in [6].

2.2.4-Trimethyl-5- (1-propenyl-3-hydroxy)-1.3-dioxolane (V). A solution of 2.14 g (0.01 mole) of IV in 10 ml of ether was added dropwise to 0.4 g (0.01 mole) of LiAlH₄ in 40 ml of dry ether at such a rate that the ether refluxed gently. The mixture was heated up to the boiling point and treated with a small amount of water. The precipitate was removed by filtration and washed several times with ether and alcohol. The ether-alcohol extracts were dried with MgSO₄. The solvents were removed, and the residue was vacuum distilled to give 0.7 g (40%) of the dioxolane with bp 98-100° (3 mm), n_D^{20} 1.4540, and d_4^{20} 1.0231. Found %: C 62.5; H 10.2; MR_D 49.04. $C_9H_{16}O_3$. Calculated %: C 62.7; H 10.3; MR_D 47.04. IR spectrum: 1650 (C=C), 3450 (OH), and 1080-1090 (C-O-C) cm⁻¹.

2.2.4-Trimethyl-5-(3-propylhydroxy)-1.3-dioxolane (VII). A) A 2.16-g (0.01 mole) sample of VI was reduced with 0.4 g (0.01 mole) of LiAlH₄ by heating in 30 ml of dry ether. Workup of the mixture gave 1 g (60%) of dioxolane with bp 96° (5 mm), n_D^{20} 1.4430, and R_f 0.18 [ether-hexane (3:1)]. Found %: C 62.3: H 10.1. $C_9H_{18}O_3$. Calculated %: C 62.0: H 10.3.

B. A 1.72-g (0.01 mole) sample of V was reduced with hydrogen in the presence of 1.5 g of Raney nickel in 20 ml of alcohol under standard conditions until 225 ml of hydrogen had been absorbed. Distillation gave 1.4 g (80%) of the dioxolane with the physical constants presented above. Gas-liquid-chromatographic analysis of a mixture of the substances obtained by the two different methods gave one peak; this confirmed that they were identical. IR spectrum: 3450 (OH) and 1080-1090 (C-O-C) cm⁻¹.

LITERATURE CITED

- 1. M. S. Malinovskii, L. P. Glushko, and N. I. Pokhodenko, Khim. Geterotsikl. Soedin., 164 (1974).
- Yu. Yu. Samitov, L. P. Glushko, M. S. Malinovskii, and N. I. Pokhodenko, Khim. Geterotsikl. Soedin., 447 (1972).
- 3. V. F. Bystrov, Usp. Khim., <u>41</u>, 531 (1972).
- 4. A. A. Bothner-By, Advances in Magnetic Resonance, Vol. 1, New York (1965), p. 195.
- 5. M. S. Malinovskii, L. P. Glushko, Yu. Yu. Samitov, T. M. Malinovskaya, and N. I. Pokhodenko, Izv. Vuzov, Khim. i Khim. Technol., <u>14</u>, 89 (1971).
- 6. L. P. Glushko, M. M. Kremlev, Yu. Yu. Samitov, and T. M. Malinovskaya, Ukr. Khim. Zh., <u>39</u>, 807 (1973).